skip to main content


Search for: All records

Creators/Authors contains: "Parker, John D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available April 1, 2025
  3. Abstract

    Low temperatures largely determine the geographic limits of plant species by reducing survival and growth. Inter-specific differences in the geographic distribution of mangrove species have been associated with cold tolerance, with exclusively tropical species being highly cold-sensitive and subtropical species being relatively cold-tolerant. To identify species-specific adaptations to low temperatures, we compared the chilling stress response of two widespread Indo-West Pacific mangrove species from Rhizophoraceae with differing latitudinal range limits—Bruguiera gymnorhiza (L.) Lam. ex Savigny (subtropical range limit) and Rhizophora apiculata Blume (tropical range limit). For both species, we measured the maximum photochemical efficiency of photosystem II (Fv/Fm) as a proxy for the physiological condition of the plants and examined gene expression profiles during chilling at 15 and 5 °C. At 15 °C, B. gymnorhiza maintained a significantly higher Fv/Fm than R. apiculata. However, at 5 °C, both species displayed equivalent Fv/Fm values. Thus, species-specific differences in chilling tolerance were only found at 15 °C, and both species were sensitive to chilling at 5 °C. At 15 °C, B. gymnorhiza downregulated genes related to the light reactions of photosynthesis and upregulated a gene involved in cyclic electron flow regulation, whereas R. apiculata downregulated more RuBisCo-related genes. At 5 °C, both species repressed genes related to CO2 assimilation. The downregulation of genes related to light absorption and upregulation of genes related to cyclic electron flow regulation are photoprotective mechanisms that likely contributed to the greater photosystem II photochemical efficiency of B. gymnorhiza at 15 °C. The results of this study provide evidence that the distributional range limits and potentially the expansion rates of plant species are associated with differences in the regulation of photosynthesis and photoprotective mechanisms under low temperatures.

     
    more » « less
  4. Abstract

    Introduced invasive plants are a major environmental problem, but public interest in invasive plants is generally considered low compared to climate change and threatened flagship species, hindering support for effective management and policy. To understand what does drive public interest in invasive plants in the US, we investigated Google Trends search data from 2010 to 2020 for 209 introduced plant species found in the continental US. Using a phylogenetically-controlled structural equation model, we investigated three hypothesized drivers of interest: (1) plant abundance as quantified by national and state-level occurrence records in the Global Biodiversity Information Facility, (2) four key plant traits that might influence plant conspicuousness to the general public: ornamental use, human health risks, monoculture formation, and plants with positive economic value, and (3) media coverage, in particular the volume and sentiment of news articles over the same 10-year period. Public search interest was highest for the most abundant introduced species and those with human health risks, but significantly lower for ornamentals. News coverage was mostly negatively toned and disproportionately focused on a relatively small group of widespread invasive species, with significantly lower and more positively-worded coverage of ornamentals. Ultimately, we suggest that a narrow emphasis on a few highly covered ‘notorious’ invasive plant species, with lower and more positive coverage of ornamental introduced species, could send mixed messages and weaken public awareness of the threats of biological invasions. However, the generally strong linkages between public search interest and media coverage of invasive plants suggests ample opportunity to improve messaging and increase public awareness.

     
    more » « less
  5. Abstract

    Bats are important pest control agents in agriculture. Yet, the underlying fine‐scale biotic and abiotic mechanisms that drive their foraging behaviors and responses to insect outbreaks are unclear. Herbivore‐induced plant volatiles (HIPVs) can attract both invertebrate and vertebrate natural enemies that use the chemical plant cues to locate insect prey. The ability of HIPVs to attract multiple species raises the question of whether they may also be a biotic factor influencing insectivorous bat activity. Additionally, abiotic factors, such as weather conditions, can affect bat activity in agricultural settings, but little is known about how bats respond to shifting environmental conditions on short timescales in this landscape context. Using a model crop system, soybean (Glycine max), our study asked three questions: (1) Which bat species are active in eastern Maryland soybean fields? (2) Is insectivorous bat activity affected by naturally occurring soybean HIPVs and/or synthetic soybean HIPVs (indole or farnesene)? (3) How is insectivorous bat activity affected by hourly weather conditions in this landscape? In soybean fields in eastern Maryland, we created paired treatment plots: HIPV plots (damaged plants or synthetic HIPV dispensers) and control plots (undamaged plants or empty dispensers). We measured bat activity using ultrasonic recorders, summarizing hourly and nightly activity, and detected 10 total species. The most abundant species were big brown/silver‐haired bats (Eptesicus fuscus/Lasionycteris noctivagans). Bat activity did not significantly differ between control and HIPV plots in any of the three experiments. Thus, our results do not support our expectation that bats in eastern Maryland use soybean HIPVs to locate insect prey. However, bat activity did increase with increasing average hourly temperature and wind speed. This initial study of bats and HIPVs, as well as the fine‐scale examination of weather conditions on bat activity, may serve as a guide for future research on bat–plant interactions that can support the development of new strategies for sustainable pest management.

     
    more » « less
  6. Abstract

    Human actions are decreasing the diversity and complexity of forests, and a mechanistic understanding of how these changes affect predators is needed to maintain ecosystem services, including pest regulation. Using a large‐scale tree diversity experiment, we investigate how spiders respond to trees growing in plots of single or mixed species combinations (4 or 12) by repeatedly sampling 540 trees spanning 15 species. In 2019 (6 years post‐establishment), spider responses to tree diversity varied by tree species. By 2021, diversity had a more consistently positive effect, with trees in 4‐ or 12‐species plots supporting 23% or 50% more spiders, respectively, compared to conspecifics in monocultures. Spiders showed stronger tree species preferences in late summer, and the positive impact of plot diversity doubled. In early summer, the positive diversity effect was tied to higher canopy cover in diverse plots, leading to higher spider densities. This indirect path strengthened in late summer, with an additional direct effect of plot diversity on spiders. Prey availability was higher in diverse plots but was not tied to spider density. Overall, diverse plots supported more predators, partly by increasing available habitat. Adopting planting strategies focused on species mixtures may better maintain higher trophic levels and ecosystem functions.

     
    more » « less
  7. Tree plantings have the potential to increase species diversity and sequester carbon, yet planting failure and early mortality pose significant barriers to their success. Biodiversity‐ecosystem function theory suggests that diverse tree plantings could improve survival outcomes through either the portfolio or facilitation effect, yet there remain few tests of this hypothesis. Here, we use a large‐scale tree‐diversity experiment (BiodiversiTREE), with monitoring of nearly 8,000 individual trees to test whether (1) tree species diversity increases survival rates, (2) tree diversity stabilizes the risk of planting failure, and/or (3) diversity effects are important relative to other common drivers of seedling mortality (e.g. herbivory and soil moisture). We found that only species identity significantly impacted the likelihood of survival, not plant functional diversity nor plot species richness nor phylogenetic diversity. There were minor effects of elevation and soil moisture on survival, but both explained a very small amount of variation in the data (r2marg ≤ 0.011). Higher tree diversity did, however, strongly reduce variation in survival across plots, with nearly 2‐fold higher coefficients of variation in monocultures (30.4%, 28.4–32.6% 95% bootstrapped confidence interval) compared to 4‐ (16.3%, 13.8–18.7%) and 12‐species plots (12.8%, 10.8–14.7%). Ultimately, our results suggest that employing diverse species can lower the risk of planting failure (i.e. the portfolio effect), but that species selection still plays a large role in early establishment.

     
    more » « less
  8. Abstract

    Efforts to catalog global biodiversity have often focused on aboveground taxonomic diversity, with limited consideration of belowground communities. However, diversity aboveground may influence the diversity of belowground communities and vice versa. In addition to taxonomic diversity, the structural diversity of plant communities may be related to the diversity of soil bacterial and fungal communities, which drive important ecosystem processes but are difficult to characterize across broad spatial scales. In forests, canopy structural diversity may influence soil microorganisms through its effects on ecosystem productivity and root architecture, and via associations between canopy structure, stand age, and species richness. Given that structural diversity is one of the few types of diversity that can be readily measured remotely (e.g., using light detection and ranging—LiDAR), establishing links between structural and microbial diversity could facilitate the detection of belowground biodiversity hotspots. We investigated the potential for using remotely sensed information about forest structural diversity as a predictor of soil microbial community richness and composition. We calculated LiDAR‐derived metrics of structural diversity as well as a suite of stand and soil properties from 38 forested plots across the central hardwoods region of Indiana, USA, to test whether forest canopy structure is linked with the community richness and diversity of four key soil microbial groups: bacteria, fungi, arbuscular mycorrhizal (AM) fungi, and ectomycorrhizal (EM) fungi. We found that the density of canopy vegetation is positively associated with the taxonomic richness (alpha diversity) of EM fungi, independent of changes in plant taxonomic richness. Further, structural diversity metrics were significantly correlated with the overall community composition of bacteria, EM, and total fungal communities. However, soil properties were the strongest predictors of variation in the taxonomic richness and community composition of microbial communities in comparison with structural diversity and tree species diversity. As remote sensing tools and algorithms are rapidly advancing, these results may have important implications for the use of remote sensing of vegetation structural diversity for management and restoration practices aimed at preserving belowground biodiversity.

     
    more » « less
  9. Abstract

    Top‐down effects of predators and bottom‐up effects of resources are important drivers of community structure and function in a wide array of ecosystems. Fertilization experiments impose variation in resource availability that can mediate the strength of predator impacts, but the prevalence of such interactions across natural productivity gradients is less clear. We studied the joint impacts of top‐down and bottom‐up factors in a tropical mangrove forest system, leveraging fine‐grained patchiness in resource availability and primary productivity on coastal cays of Belize. We excluded birds from canopies of red mangrove (Rhizophoraceae:Rhizophora mangle) for 13 months in zones of phosphorus‐limited, stunted dwarf mangroves, and in adjacent zones of vigorous mangroves that receive detrital subsidies. Birds decreased total arthropod densities by 62%, herbivore densities more than fivefold, and reduced rates of leaf and bud herbivory by 45% and 52%, respectively. Despite similar arthropod densities across both zones of productivity, leaf and bud damage were 2.0 and 4.3 times greater in productive stands. Detrital subsidies strongly impacted a suite of plant traits in productive stands, potentially making leaves more nutritious and vulnerable to damage. Despite consistently strong impacts on herbivory, we did not detect top‐down forcing that impacted mangrove growth, which was similar with and without birds. Our results indicated that both top‐down and bottom‐up forces drive arthropod community dynamics, but attenuation at the plant‐herbivore interface weakens top‐down control by avian insectivores.

     
    more » « less